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Abstract, We have studiedthe phase transition of the king model on a family of fractals called 
Nice frees whore specnal dimension ds can take values greater than 2. The phase transition is 
shown to be the trivial zero-temperature one through exactly solving the free energy and the 
spontaneous magnetization of the sysmn, and is different from that on Cayley Uees. The result 
is independent of d, of the structure and hence provides an example of trivial phase Wansition 
at ds > 2, which does not agree with the argument of Yu and Gong. It suggests that the role of 
d, in determining the phase *ition may be complex. 

1. Introduction 

It is well known that on translationally invariant lattices the non-trivial phase transition is 
completely determined by the dimensionality D of the structure [l]. For example, D > 2 is 
the sufficient and necessary condition for the non-trivial phase transition of the king model. 
As to the situation on fractals, the role of dimensionality is replaced by ramification. Gefen 
and his co-workers have found that the non-trivial phase transition of the Ising model occurs 
if and only if the ramification of the fractal is infinite [2-4]. 

Recently, the point at issue comes to the rule that determines the phase transition on 
general structures, including tragslationally invariant lattices and fractals. Some authors 
have emphasized the importance of the spectral dimension ds [5-91. d, is defined from 
the long-time behaviour of random walks and characterizes the anomalous feature of the 
dynamical behaviours [lo]. Since phase transitions are governed by long-range correlations, 
it should be closely related to low-frequency models and d,. It was proved by Cassi that the 
necessary condition for a continuous symmetry breaking is d, > 2 [7]. Yu and Gong argued 
that when the ramification R is finite, d, 2 2 is the sufficient and necessary condition of a 
discrete symmetry breaking 181. In both cases, structures with d, > 2 are needed to check 
the ideas. Nice trees (NTD, D is the dimension of the trees) are just such a kind of support 
whose d, can take~values greater than 2, and thus can serve as good ‘laboratories’ [9,11]. 
Clarifying the role of d, in determining the phase transition is the first motivation for us to 
study the king model on NTD. 

The second motivation concerns the recent work of Burioni and Cassi (BC), which found 
that diffusion on NTD is non-anomalous [9]. It was generally believed that the long-time 
behaviour of random walks on fractals satisfied an anomalous power law, which defines 
the spectral dimension d, of the shuctures [IO]. As a result, d, is smaller than the fractal 
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dimension 4. However, it was proved by BC that on NTD d, equals d j ,  which agrees well 
with the situation on Euclidean structures, and in this sense it is non-anomalous [9]. Then 
the natural question is whether other statistical problems on this structure that are relevant 
to random walks such as phase transition also show specialities. 

The third motivation comes from the similarity of the structures between NTD and Cayley 
trees. It is well known that the phase transition of the Ising model on Cayley trees is of a 
special type called a 'continuous' phase transition [ E ,  131. The spontaneous magnetization 
in its central portion takes a non-zero value below a finite temperature while the mean 
value of the magnetization of the system equals zero. Similarly, one may ask whether the 
situation on NTD is also true. 

In this paper we have studied the phase transition of the Ising model on NTD. The 
free energy of the system is exactly solved to be analytic for all finite temperatures and the 
spontaneous magnetization of the original point is calculated to be zero. We conclude that 
the phase transition is a trivial one. This result is independent of the spectral dimension ds 
and hence provides an example of trivial phase transition at ds > 2, which disagrees with 
the argument of Yu and Gong. 

2. Method and result 

mD can be constructed in the following way: take an origin point 0 and connect it with 
another point 1 by a bond of length 1; to the vertex point 1, attach r branches of length 2 
and all the end points are labelled 2; again to each vertex point 2 attach r branches of length 
4 with the end points labelled 3 and generally attach to each vertex point n, r branches of 
length 2" with the end.points labelled n + 1 (see figure 1). The fractal dimension and the 
spectral dimension of NTD are given as [9] 

S Wu and Z R Yang 

In r 
In 2 

d, = d, = 1 + - 
We see that ds can take any value by choosing r appropriately. 

Consider the Ising Hamiltonian 

where ui is the spin at the site i which takes the values &I, K is the coupling parameter, 
h is the applied field and the summation is over all the nearest neighbours. Since there is 
no closed loop on NTD, we construct another set of variables ( u ~ ,  &)] which equals {q). 
Here uo is the spin at the original point and 0, = oju; is the variable associated to the 

points 
coupling K is defined on the tree with the spins set a1 each site. 

labelled in the figure The Iring model with c o n s a t  .. 
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bond, where q and uj are the spins at the ends of the bond. If no applied field exists, the 
partition function of the system is easily obtained as 

where Nb is the number of bonds on NTD. It can be easily obtained that Nb = !Vs - 1, 
where N, is the number of sites on NTD. The free energy of the system is then given as 

which is analytic for all T, as is the specific heat. We should be careful in coming to the 
conclusion that the phase transition of the Ising model on NTD is a trivial one. As shown 
in figure 2, the Ising model on NTD is transformed through a decimation operation to a new 
kind of Ising model with a variety of couplings on the Cayley tree. It is well known that 
the Ising model with constant coupling on Cayley trees exhibits a special phase transition 
in the sense that the spontaneous magnetization in only a small portion of the system (e.g. 
the point 0 in figure 2) takes a non-zero values below a finite temperature. Thus we should 
also calculate the spontaneous magnetization of the original point 0 on N T D .  

Let us first introduce some useful terminology. The partition function Z of the system is 
separated into two parts Z+ and Z-, which correspond to the spin uo taking the values +1 
and -1, respectively. To each branching point s, we define the restricted partition function' 
As e-@€, where the summation is over all the spins located on the subtrees started 
from the point s. As is similarly split into A$ and A; according to the value of the spin us. 

With the use of the above definitions, we get the spontaneous magnetization of the 
point 0 

1 I 7-\ 

Figure 2. A branch of a Cayley tree with branching number 
r = 3. The king model with constant coupling on "ID in figure 1 
is transformed through the decimation operation to a new king 
model with a v ~ e t y  of couplings on the wee such as KI = K, 
K2 = tanh-'(tanh* K). K3 = tanh-'(tanh4 K )  and so on. 

pi:: <.. \.: 

!.~. % .  

I i 
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From the expressions (5)-(8), we note that in order to get mo, we need to calculate AT/?.; 
first. In the following we derive the recursion relation of At,fA;. For the path connecting 
the branching points s and 5 + 1, we define f:f;" = e-#€, which corresponds to the 
case that the spins at the branching points s and s f 1 both take the values +1, and the 
summation is over all the other spins on the path. L+- is similarly defined for the case 
that the spins at the branching points take the values + I  and -1, and so is f;-. Using the 
functions f,", f:- and f;-, we have 

and then 

The boundary condition is 
+ h " = e  2k . 

A, 
We can also obtain the recursion relations of f,++, L+- and &--. From the structure 

of N T ~  we note that the path between the branching points s and s + I can be regarded 
as composed by two identical p m ,  each of them equal to the path between the branching 
points s - 1 and s. Thus we obtain 

and 

The initial condition (corresponding to, the path between points 0 and 1) is 

(18) 

We note that in the recursion relation (11) L++/&+- and L--/L+- are the functions 
of s which prevent us from applying the analytic method used for Cayley trees [12]. We 
have to make a numerical calculation. 

Combining the essential equations (5). (S), (Il), (16) and (17), the boundary condition 
(12) and the initial condition (18). we finally get mo = 0 (see the appendix). By the same 
procedure, we can easily obtain that the spontaneous magnetizations of all other sites are 
also zero and so is the mean value. 

fo++ = eK fc- = e-K f;-=e. k 
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3. Conclusion and discussion 

So far we have got that the free energy of the system is analytic for all finite T when there 
is no applied field and the spontaneous magnetizations of all sites are zero. We conclude 
that the phase transition on NTD is a trivial one and different from that on Cayley trees. 
The reason for this difference may be simply understood as in contrast to the situation on 
Cayley trees where the distances between neighbouring branching points are all equal, the 
distances on NTD grows very fast (which is 2' between the branching points s and s + 1) 
as s increases, and thus the phase transition on NTD is, in some sense, very like that on a 
one-dimensional chain. 

Our result is independent of the ds of the structure and gives an example of a trivial 
phase transition at d, 2 2 which does not agree with the argument of Yu and Gong 181. 
We note that the periodic Koch lattice (PKL) which was used as the example of a finitely 
ramified fractal with d, = 2 in [8] is, in fact, an infinitely ramified one, for PKL can be 
straightened to the square lattice and hence has the same infinite ramification as the latter. 

We believe that d, plays an important role in determining phase transition. However, 
our results suggest that the role may be complex and further work is needed. 
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Appendix. The calculation of n~ 

We define M(L)  the spontaneous magnetization of the point o of a finite mD, where L is 
the largest label of the branching points. In the limit of L + 00, M ( L )  = mo. 

M (L) 0.00' 
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F i p  Al.  (U)  The spontaneous magnetization of h e  point o M ( L )  versus L .  M ( L )  = ma 
in the limit of L -f m. It shows that M ( L )  quickly approaches to its asymptotic value as L 
increases. The parameters are h = 0.00001 and GK = 20, 25. (b) The asymptotic value mo 
(approximated by M(2000) versus h). It shows that in the limit of h + 0, mg equals zem. The 
parameters are = 15, 20 and 25. 
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The boundary condition (12) is changed as 

(AI) 

Combining the essential equations (3, (S), (ll),  (16) and (17), the boundary condition 

In figure Al(a) we show that M ( L )  approaches its asymptotic value mo very quickly 

In figure Al(b) we show that the asymptotic value mo equals zero when h -+ 0, which 

So we conclude mo = 0 on NTD. 

hi -= e2h. 

AL 

(19) and the initial condition (U), we obtain M ( L ) ,  as shown in figure Al. 

as L increases. 

is independent of the coupling parameter K. 
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